Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum

نویسندگان

  • Michael E. Pyne
  • Murray Moo-Young
  • Duane A. Chung
  • Perry Chou
  • George N. Bennett
چکیده

Clostridium pasteurianum is receiving growing attention for its unique metabolic properties, particularly its ability to convert waste glycerol and glycerol-rich byproducts into butanol, a prospective biofuel. Genetic tool development and whole genome sequencing have recently been investigated to advance the genetic tractability of this potential industrial host. Nevertheless, methodologies for tuning gene expression through plasmid-borne expression and chromosomal gene downregulation are still absent. Here we demonstrate plasmid-borne heterologous gene expression and gene knockdown using antisense RNA in C. pasteurianum. We first employed a common thermophilic β-galactosidase (lacZ) gene reporter system from Thermoanaerobacterium thermosulfurogenes to characterize two promoters involved in the central fermentative metabolism of C. pasteurianum. Due to a higher level of constitutive lacZ expression compared to the ferredoxin gene (fdx) promoter, the thiolase (thl) promoter was selected to drive expression of asRNA. Expression of a lacZ asRNA resulted in 52%–58% downregulation of β-galactosidase activity compared to the control strain throughout the duration of culture growth. Subsequent implementation of our asRNA approach for downregulation of the native hydrogenase I gene (hydA) in C. pasteurianum resulted in altered end product distribution, characterized by an increase in production of reduced metabolites, particularly butyrate (40% increase) and ethanol (25% increase). Knockdown of hydA was also accompanied by increased acetate formation and OPEN ACCESS Fermentation 2015, 1 114 lower levels of 1,3-propanediol, signifying a dramatic shift in cellular metabolism in response to inhibition of the hydrogenase enzyme. The methodologies described herein for plasmid-based heterologous gene expression and antisense-RNA-mediated gene knockdown should promote rational metabolic engineering of C. pasteurianum for enhanced production of butanol as a prospective biofuel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum.

We investigated the effect of antisense RNA (asRNA) structural properties on the downregulation efficacy of enzymes in the acetone-formation pathway (acetoacetate decarboxylase [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824. First, we generated three strains, C. acetobutylicum ATCC 824 (pADC38AS), 824(pADC68AS), and 824(pADC100AS), which contain plasmids...

متن کامل

HOTAIR Induces the Downregulation of miR-200 Family Members in Gastric Cancer Cell Lines

Background: Gastric cancer (GC) is the fourth most common human malignancy and the second reason for cancer morbidity worldwide. Long noncoding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) has recently emerged as a promoter of metastasis in various cancer types, including GC, through the epithelial‑mesenchymal transition (EMT) process. However, the exact mechanism of HOTAIR in promoting E...

متن کامل

Improving gene transfer in Clostridium pasteurianum through the isolation of rare hypertransformable variants

Effective microbial metabolic engineering is reliant on efficient gene transfer. Here we present a simple screening strategy that may be deployed to isolate rare, hypertransformable variants. The procedure was used to increase the frequency of transformation of the solvent producing organism Clostridium pasteurianum by three to four orders of magnitude.

متن کامل

Expansion of the genetic toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal gene disruption of the endogenous CpaAI restriction enzyme

BACKGROUND Clostridium pasteurianum is one of the most promising biofuel producers within the genus Clostridium owing to its unique metabolic ability to ferment glycerol into butanol. Although an efficient means is available for introducing foreign DNA to C. pasteurianum, major genetic tools, such as gene knockout, knockdown, or genome editing, are lacking, preventing metabolic engineering of C...

متن کامل

Cloning, sequencing and expression in Escherichia coli of the rubredoxin gene from Clostridium pasteurianum.

A 3.9 kb BglII-HindIII DNA fragment containing the rubredoxin gene from Clostridium pasteurianum has been cloned using oligonucleotide probes designed from the protein sequence. The 2675 bp SspI-HindIII portion of this fragment has been sequenced and found to contain three open reading frames in addition to the rubredoxin gene. The putative product of one of these open reading frames is similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015